Monday, 5 November 2012

black hole - What are the biggest problems about the numerical, finite-element GR models?

If you can provide examples of numerical methods in GR you've seen/heard of that would help focus the question.



From the article you linked to: "The technique keeps track of a vast number of quarks and gluons by describing the space and time inside a proton with a set of points that make up a 4D lattice". This almost gets to the main issue with Numerical Relativity. There is no natural computational grid on which to simulate space-time. The whole game with GR is that gravity is space-time so first you have to simulate the space-time and then you have to simulate the objects (neutron stars, black holes, gravitational waves) on top.



As the links below go into, its very difficult to create a consistent computational grid since the physical space-time your trying to simulate for a black hole has "funny" things in it like singularities, or an event horizon pas which we can't really know what's going on.



I think this article: http://astronomy.com/magazine/2016/02/putting-einstein-to-the-test?page=1



does a good job of summing up the field, and its quite accessible.



For something more rigorous please see: http://arxiv.org/pdf/1010.5260v2.pdf
That paper gets into some of the math behind the article linked to above.

No comments:

Post a Comment