Friday, 7 March 2008

at.algebraic topology - Motivation for algebraic K-theory?

Algebraic K-theory originated in classical materials that connected class groups, unit groups and determinants, Brauer groups, and related things for rings of integers, fields, etc, and includes a lot of local-to-global principles. But that's the original motivation and not the way the work in the field is currently going - from your question it seems like you're asking about a motivation for "higher" algebraic K-theory.



From the perspective of homotopy theory, algebraic K-theory has a certain universality. A category with a symmetric monoidal structure has a classifying space, or nerve, that precisely inherits a "coherent" multiplication (an E_oo-space structure, to be exact), and such an object has a naturally associated group completion. This is the K-theory object of the category, and K-theory is in some sense the universal functor that takes a category with a symmetric monoidal structure and turns it into an additive structure. The K-theory of the category of finite sets captures stable homotopy groups of spheres. The K-theory of the category of vector spaces (with appropriately topologized spaces of endomorphisms) captures complex or real topological K-theory. The K-theory of certain categories associated to manifolds yields very sensitive information about differentiable structures.



One perspective on rings is that you should study them via their module categories, and algebraic K-theory is a universal thing that does this. The Q-construction and Waldhausen's S.-construction are souped up to include extra structure like universally turning a family of maps into equivalences, or universally splitting certain notions of exact sequence. But these are extra.



It's also applicable to dg-rings or structured ring spectra, and is one of the few ways we have to extract arithmetic data out of some of those.



And yes, it's very hard to compute, in some sense because it is universal. But it generalizes a lot of the phenomena that were useful in extracting arithmetic information from rings in the lower algebraic K-groups and so I think it's generally accepted as the "right" generalization.



This is all vague stuff but I hope I can at least make you feel that some of us study it not just because "it's there".

No comments:

Post a Comment