I was reading Appendix F of Steven Weingberg's book "Cosmology". In this Appendix he works out the perturbations to a cosmological fluid described by non-relativistic hydrodynamics and Newtonian gravity.
It turns out that the first order perturbations satisfy,
fracpartialdeltarhopartialt+3Hdeltarho+HvecXcdotnabladeltarho+barrhonablacdotvecv=0,qquadtag1
fracpartialdeltavecvpartialt+HvecXcdotnabladeltavecv+Hdeltavecv=−nabladeltaphi,qquadtag2
nabla2deltaphi=4piGdeltarho.qquadtag3
Weinberg applies the following Fourier transform to these equations,
f(vecX,t)=intexpleft(fracivecqcdotvecXaright)fvecq(t)mathrmd3vecq
where f(vecX,t) is a place holder for deltavecv,deltarho, and deltaphi.
The resulting equations he gets are,
fracmathrmddeltarhovecqmathrmdt+3Hdeltarhovecq+fracibarrhoavecqcdotdeltavecvvecq=0qquadtag1′
fracmathrmddeltavecvvecqmathrmdt+Hdeltavecvvecq=−fraciavecqdeltaphivecqqquadtag2′
vecq2deltaphivecq=−4piGa2deltarhovecqqquadtag3′
For the most part these new equations can be obtained by making the substitution nablarightarrowivecq/a.
My question : There doesn't seem to be any terms in the transformed equations which correspond to the terms HvecXcdotnabladeltarho and HvecXcdotnabladeltavecv. Weinberg makes no comment about their absence. Is anyone aware of a legitimate mathematical reason for these terms to disappear in the transformed equations?
No comments:
Post a Comment