Friday, 22 February 2013

Missing Terms in Weinberg's treatment of perturbations on Newtonian Cosmology

I was reading Appendix F of Steven Weingberg's book "Cosmology". In this Appendix he works out the perturbations to a cosmological fluid described by non-relativistic hydrodynamics and Newtonian gravity.



It turns out that the first order perturbations satisfy,



fracpartialdeltarhopartialt+3Hdeltarho+HvecXcdotnabladeltarho+barrhonablacdotvecv=0,qquadtag1



fracpartialdeltavecvpartialt+HvecXcdotnabladeltavecv+Hdeltavecv=nabladeltaphi,qquadtag2



nabla2deltaphi=4piGdeltarho.qquadtag3



Weinberg applies the following Fourier transform to these equations,



f(vecX,t)=intexpleft(fracivecqcdotvecXaright)fvecq(t)mathrmd3vecq

,



where f(vecX,t) is a place holder for deltavecv,deltarho, and deltaphi.



The resulting equations he gets are,



fracmathrmddeltarhovecqmathrmdt+3Hdeltarhovecq+fracibarrhoavecqcdotdeltavecvvecq=0qquadtag1



fracmathrmddeltavecvvecqmathrmdt+Hdeltavecvvecq=fraciavecqdeltaphivecqqquadtag2



vecq2deltaphivecq=4piGa2deltarhovecqqquadtag3

.



For the most part these new equations can be obtained by making the substitution nablarightarrowivecq/a.




My question : There doesn't seem to be any terms in the transformed equations which correspond to the terms HvecXcdotnabladeltarho and HvecXcdotnabladeltavecv. Weinberg makes no comment about their absence. Is anyone aware of a legitimate mathematical reason for these terms to disappear in the transformed equations?

No comments:

Post a Comment