Denote f(n)=prodn−1k=1Gammaleft(fracknright)
and F(n)=prod1leklen−1,kperpnGammaleft(fracknright)
We have f(n)=prodd|nF(n) and therefore by Mobius inversion F(n)=prodd|nf(d)mu(n/d)
By the multiplication theorem we have f(n)=frac1sqrtn(2pi)fracn−12, so if n is not a prime power F(n)=prodd|nleft(frac1sqrtd(2pi)fracd−12right)mu(n/d)=(2pi)frac12varphi(n)
The formula F(n)=sqrtvarphi(n)+1f(varphi(n)+1) follows.
No comments:
Post a Comment