k is an algebraically closed field, X is a smooth, connected, projective curve over k. f: X-->P^1 is a finite morphism. Let t be a parameter of P^1, suppose f is etale outside t=0 and t=infty, and tamely ramified over these two points. Prove that f is a cyclic cover, i.e., K(X)=k(t)[h]/(h^n-ut), u is a unit in field k.
No comments:
Post a Comment