Saturday, 6 September 2008

nt.number theory - Strict Class Numbers of Totally Real Fields

Maybe it's worth a word about why Cohen-Lenstra predicts this behavior. Suppose K is a field with r archimedean places. Then Spec O_K can be thought of as analogous to a curve over a finite field k with r punctures, which is an affine scheme Spec R. Write C for the (unpunctured) curve. Then the class group of R is the quotient of Pic(C)(k) by the subgroup generated by the classes of the punctures -- or, what is the same, the quotient of Jac(C)(k) by the subgroup generated by degree-0 divisors supported on the punctures. (This last subgroup is just the image of a natural homomorphim from Z^{r-1} to Jac(C)(k).)



The Cohen-Lenstra philosophy is that these groups and the puncture data are "random" -- that is, you should expect that the p-part of the class group of R looks just like what you would get if you chose a random finite abelian p-group (where a group A is weighted by 1/|Aut(A)|) and mod out by the image of a random homomorphism from Z^{r-1}. (There are various ways in which this description is slightly off the mark but this gives the general point.)



It turns out that when r > 1 the chance is quite good that a random homomorphism from Z^{r-1} to A is surjective. In fact, the probability is close enough to 1 that when you take a product over all p you still get a positive number. In other words, when r > 1 Cohen-Lenstra predicts a positive probability that the class group will have trivial p-part for all p; in other words, it is trivial. (In fact, it predicts a precise probability, which fits experimental data quite well.)



When r = 1, on the other hand, the class group is just A itself, and the probability its p-part is trivial is on order 1-1/p. Now the product over all p is 0, so one does NOT expect to see a positive proportion of trivial class groups. And in fact, when there is just one archimedean place -- i.e. when K is imaginary quadratic -- this is just what happens!

No comments:

Post a Comment