Wednesday, 2 June 2010

real analysis - Cartesian product of test function spaces

Mini introduction



Suppose UsubsetmathbbRn,VsubsetmathbbRm are two open sets. If we take http://en.wikipedia.org/wiki/Distributions_space#Test_function_space">test functions fiinmathfrakD(U), giinmathfrakD(V) for 1leqileqn, then f1(x)g1(y)+dots+fn(x)gn(y) is an element of mathfrakD(UtimesV), so we have an inclusion:
operatornamespanleft(mathfrakD(U)timesmathfrakD(U)right)subsetmathfrakD(UtimesV)


where "span" means linear span.



Question




Is it true that
overlineoperatornamespanleft(mathfrakD(U)timesmathfrakD(U)right)=mathfrakD(UtimesV)


where line means the closure in topology of mathfrakD(UtimesV)?


No comments:

Post a Comment