Hi
In Mixed Hodge modules Saito computes the Verdier specialisation of a D-modules with respect to a monomial g=xm11ldotsxmnn. This is a very nice result as I find such explicit computations are quite rare in the litterature but I'm having problems understanding his proof.
Let X be a polydisc, Di=xi=0, DI=bigcapiinIDi. Consider M a regular holonomic algebraic quasi-unipotent right D-module with characteristic variety contained in the union of the conormal bundles to the DI. For nu=(nu1,ldots,nun), set
Mnu:=langleuinM | u(xipartiali−nui)p=0 textrmfor$pgg0$rangle
We have bigoplusnuinmathbbQnMnu=M.
Let g:XtoS, S an open disk, given by g=xm11ldotsxmnn=xm and ig:XtoXtimesS its graph. The D-module tildeM=(ig)∗M is M[partialt] with the action of DXtimesS given by:
(uotimespartialjt)xi=uxiotimespartialjt,quad(uotimespartialjt)partiali=upartialiotimespartialjt−u(partialig)otimesotimespartialj+1t
(uotimespartialjt)t=ugotimespartialjt+juotimespartialj−1t,quad(uotimespartialjt)partialt=uxiotimespartialj+1t
Theorem (3.4 p. 280): The V-filtration of tildeM along t=0 is generated over DX by
Mnuotimes1 textrmwith$nuileqmialpha$quadtextrmif$alpha<0$
Mnuotimespartialjt textrmwith$nuileqmi(alpha−j)$quadtextrmingeneral
It is enough to check that the filtration defined in the theorem satifies the properties of the V-filtration. Saito says:
"We have
(uotimespartialjt)xipartiali=(uotimespartialjt)(Ni+nui−mi(s−j))qquadforalluinMnu
where s=tpartialt and (uotimespartialjt)Ni=u(xipartiali−nui)otimespartialjt if uinMnu. Thus we get that s−alpha is nilpotent on GrValphatildeM and ValphatildeM ar V0DXtimesS-submodules."
I don't understand this last statement. GrValphatildeM is generated over DX by the uotimespartialjtinValphatildeM with at least one i so that nui=mi(alpha−j). For such nu, the above equation reads
(uotimespartialjt)xipartiali=(uotimespartialjt)(Ni−mi(s−alpha))
Why would this imply that s−alpha is nilpotent?
Edit: I think I have found the answer. Consider uotimespartialjt with nuileqmi(alpha−j) forall i. Set I:=langlei | nui=mi(alpha−j), mineq0rangle. Then
(uotimespartialjt)(prodiinIxipartiali)=(uprodiinIxiotimespartialjt)(prodiinIpartiali)
is in V<alphatildeM. So, by applying the relation above, we have
(uotimespartialjt)prodiinI(Ni−mi(s−alpha))=(uotimespartialjt)(prodiinIxipartiali)=(uprodiinIxiotimespartialjt)(prodiinIpartiali)=0
in GrValphatildeM. So
(uotimespartialjt)(s−alpha)|I|=(uotimespartialjt)(sumk=|I|−1k=0sigmak(Ni/mi)(s−alpha)k))
The operator on the right hand side is a polynomial in the Ni's with coefficient in Q[s−alpha] and no constant term. So if pi is the nilpotency order of Ni operatating on uotimespartialjt and we elevate the relation to the power sumpi we find that (uotimespartialjt)(s−alpha)|I|(sumpi)=0. So s−alpha is indeed nilpotent.
No comments:
Post a Comment