Sunday, 1 June 2008

V-filtration of D-modules associated to a monomial

Hi



In Mixed Hodge modules Saito computes the Verdier specialisation of a D-modules with respect to a monomial g=xm11ldotsxmnn. This is a very nice result as I find such explicit computations are quite rare in the litterature but I'm having problems understanding his proof.



Let X be a polydisc, Di=xi=0, DI=bigcapiinIDi. Consider M a regular holonomic algebraic quasi-unipotent right D-module with characteristic variety contained in the union of the conormal bundles to the DI. For nu=(nu1,ldots,nun), set
Mnu:=langleuinM | u(xipartialinui)p=0  textrmfor$pgg0$rangle


We have bigoplusnuinmathbbQnMnu=M.



Let g:XtoS, S an open disk, given by g=xm11ldotsxmnn=xm and ig:XtoXtimesS its graph. The D-module tildeM=(ig)M is M[partialt] with the action of DXtimesS given by:
(uotimespartialjt)xi=uxiotimespartialjt,quad(uotimespartialjt)partiali=upartialiotimespartialjtu(partialig)otimesotimespartialj+1t


(uotimespartialjt)t=ugotimespartialjt+juotimespartialj1t,quad(uotimespartialjt)partialt=uxiotimespartialj+1t



Theorem (3.4 p. 280): The V-filtration of tildeM along t=0 is generated over DX by
Mnuotimes1  textrmwith$nuileqmialpha$quadtextrmif$alpha<0$


Mnuotimespartialjt  textrmwith$nuileqmi(alphaj)$quadtextrmingeneral



It is enough to check that the filtration defined in the theorem satifies the properties of the V-filtration. Saito says:



"We have
(uotimespartialjt)xipartiali=(uotimespartialjt)(Ni+nuimi(sj))qquadforalluinMnu


where s=tpartialt and (uotimespartialjt)Ni=u(xipartialinui)otimespartialjt if uinMnu. Thus we get that salpha is nilpotent on GrValphatildeM and ValphatildeM ar V0DXtimesS-submodules."



I don't understand this last statement. GrValphatildeM is generated over DX by the uotimespartialjtinValphatildeM with at least one i so that nui=mi(alphaj). For such nu, the above equation reads
(uotimespartialjt)xipartiali=(uotimespartialjt)(Nimi(salpha))


Why would this imply that salpha is nilpotent?



Edit: I think I have found the answer. Consider uotimespartialjt with nuileqmi(alphaj) forall i. Set I:=langlei | nui=mi(alphaj), mineq0rangle. Then
(uotimespartialjt)(prodiinIxipartiali)=(uprodiinIxiotimespartialjt)(prodiinIpartiali)


is in V<alphatildeM. So, by applying the relation above, we have
(uotimespartialjt)prodiinI(Nimi(salpha))=(uotimespartialjt)(prodiinIxipartiali)=(uprodiinIxiotimespartialjt)(prodiinIpartiali)=0

in GrValphatildeM. So
(uotimespartialjt)(salpha)|I|=(uotimespartialjt)(sumk=|I|1k=0sigmak(Ni/mi)(salpha)k))

The operator on the right hand side is a polynomial in the Ni's with coefficient in Q[salpha] and no constant term. So if pi is the nilpotency order of Ni operatating on uotimespartialjt and we elevate the relation to the power sumpi we find that (uotimespartialjt)(salpha)|I|(sumpi)=0. So salpha is indeed nilpotent.

No comments:

Post a Comment