Tuesday, 2 August 2011

What are fixed points of the Fourier Transform

bf1. A more complete list of particular self-reciprocal Fourier functions of the first kind, i.e. eigenfunctions of the cosine Fourier transform sqrtfrac2piinti0nftyf(x)cosaxdx=f(a):



1. displaystyleex2/2 (more generally ex2/2H2n(x), Hn is Hermite polynomial)



2. displaystylefrac1sqrtx qquad 3. displaystylefrac1coshsqrtfracpi2x qquad 4. displaystylefraccoshfracsqrtpix2coshsqrtpix qquad5. displaystylefrac11+2coshleft(sqrtfrac2pi3xright)



6. displaystylefraccoshfracsqrt3pix22coshleft(2sqrtfracpi3xright)1 qquad 7. displaystylefraccoshleft(sqrtfrac3pi2xright)cosh(sqrt2pix)cos(sqrt3pi) qquad 8. displaystylecosleft(fracx22fracpi8right)



9. displaystylefraccosfracx22+sinfracx22coshsqrtfracpi2x qquad 10. displaystylesqrtxJfrac14left(fracx22right) qquad 11. displaystylefracsqrt[4]aKfrac14left(asqrtx2+a2right)(x2+a2)frac18



12. displaystylefracxebetasqrtx2+beta2sqrtx2+beta2sqrtsqrtx2+beta2betaqquad 13. displaystylepsileft(1+fracxsqrt2piright)lnfracxsqrt2pi, psi is digamma function.



Examples 15,810 are from the chapter about self-reciprocal functions in Titschmarsh's book "Introduction to the theory of Fourier transform". Examples 11 and 12 can be found in Gradsteyn and Ryzhik. Examples 6 and 7 are from this question What are all functions of the form fraccosh(alphax)coshx+c self-reciprocal under Fourier transform?. Some other self-reciprocal functions composed of hyperbolic functions are given in Bryden Cais's paper On the transformation of infinite series. Discussion of 13 can be found in Berndt's article.



bf2. Self-reciprocal Fourier functions of the second kind, i.e. eigenfunctions of the sine Fourier transform sqrtfrac2piinti0nftyf(x)sinaxdx=f(a):



1. displaystylefrac1sqrtx qquad 2. displaystylexex2/2 (and more generally ex2/2H2n+1(x))



3. displaystylefrac1esqrt2pix1frac1sqrt2pix qquad 4. displaystylefracsinhfracsqrtpix2coshsqrtpix qquad 5. displaystylefracsinhsqrtfracpi6x2coshleft(sqrtfrac2pi3xright)1



6. displaystylefracsinh(sqrtpix)coshsqrt2pixcos(sqrt2pi) qquad 7. displaystylefracsinfracx22sinhsqrtfracpi2x qquad 8. displaystylefracxKfrac34left(asqrtx2+a2right)(x2+a2)frac38



9. displaystylefracxebetasqrtx2+beta2sqrtx2+beta2sqrtsqrtx2+beta2+betaqquad 10. displaystylesqrtxJfrac14left(fracx22right)qquad 11. displaystyleefracx24I0left(fracx24right)



12. displaystylesinleft(frac3pi8+fracx24right)J0left(fracx24right)qquad 13. displaystylefracsinhsqrtfrac2pi3xcoshsqrtfrac3pi2x



Examples 15,7 can be found in Titschmarsh's book cited above. 812 can be found in Gradsteyn and Ryzhik. 13 is from Bryden Cais, On the transformation of infinite series, where more functions of this kind are given.

No comments:

Post a Comment