bf1. A more complete list of particular self-reciprocal Fourier functions of the first kind, i.e. eigenfunctions of the cosine Fourier transform sqrtfrac2piinti0nftyf(x)cosaxdx=f(a):
1. displaystylee−x2/2 (more generally e−x2/2H2n(x), Hn is Hermite polynomial)
2. displaystylefrac1sqrtx qquad 3. displaystylefrac1coshsqrtfracpi2x qquad 4. displaystylefraccoshfracsqrtpix2coshsqrtpix qquad5. displaystylefrac11+2coshleft(sqrtfrac2pi3xright)
6. displaystylefraccoshfracsqrt3pix22coshleft(2sqrtfracpi3xright)−1 qquad 7. displaystylefraccoshleft(sqrtfrac3pi2xright)cosh(sqrt2pix)−cos(sqrt3pi) qquad 8. displaystylecosleft(fracx22−fracpi8right)
9. displaystylefraccosfracx22+sinfracx22coshsqrtfracpi2x qquad 10. displaystylesqrtxJ−frac14left(fracx22right) qquad 11. displaystylefracsqrt[4]aKfrac14left(asqrtx2+a2right)(x2+a2)frac18
12. displaystylefracxe−betasqrtx2+beta2sqrtx2+beta2sqrtsqrtx2+beta2−betaqquad 13. displaystylepsileft(1+fracxsqrt2piright)−lnfracxsqrt2pi, psi is digamma function.
Examples 1−5,8−10 are from the chapter about self-reciprocal functions in Titschmarsh's book "Introduction to the theory of Fourier transform". Examples 11 and 12 can be found in Gradsteyn and Ryzhik. Examples 6 and 7 are from this question What are all functions of the form fraccosh(alphax)coshx+c self-reciprocal under Fourier transform?. Some other self-reciprocal functions composed of hyperbolic functions are given in Bryden Cais's paper On the transformation of infinite series. Discussion of 13 can be found in Berndt's article.
bf2. Self-reciprocal Fourier functions of the second kind, i.e. eigenfunctions of the sine Fourier transform sqrtfrac2piinti0nftyf(x)sinaxdx=f(a):
1. displaystylefrac1sqrtx qquad 2. displaystylexe−x2/2 (and more generally e−x2/2H2n+1(x))
3. displaystylefrac1esqrt2pix−1−frac1sqrt2pix qquad 4. displaystylefracsinhfracsqrtpix2coshsqrtpix qquad 5. displaystylefracsinhsqrtfracpi6x2coshleft(sqrtfrac2pi3xright)−1
6. displaystylefracsinh(sqrtpix)coshsqrt2pix−cos(sqrt2pi) qquad 7. displaystylefracsinfracx22sinhsqrtfracpi2x qquad 8. displaystylefracxKfrac34left(asqrtx2+a2right)(x2+a2)frac38
9. displaystylefracxe−betasqrtx2+beta2sqrtx2+beta2sqrtsqrtx2+beta2+betaqquad 10. displaystylesqrtxJfrac14left(fracx22right)qquad 11. displaystylee−fracx24I0left(fracx24right)
12. displaystylesinleft(frac3pi8+fracx24right)J0left(fracx24right)qquad 13. displaystylefracsinhsqrtfrac2pi3xcoshsqrtfrac3pi2x
Examples 1−5,7 can be found in Titschmarsh's book cited above. 8−12 can be found in Gradsteyn and Ryzhik. 13 is from Bryden Cais, On the transformation of infinite series, where more functions of this kind are given.
No comments:
Post a Comment