Here is an easy 5 dimensional space of cycles: Inside AtimesA, consider the subvarieties (a,b):a=mb, for m=0, 1, 2, 3, 4. I will show that these are linearly independent over mathbbQ.
By Kunneth and Poincare,
H4(AtimesA,mathbbQ)congbigoplus4i=0Hi(A,mathbbQ)otimesH4−i(A,mathbbQ)congbigoplus4i=0mathrmEnd(Hi(A,mathbbQ)).
The graph of multiplication by m, in this presentation, has class
(mathrmId,mmathrmId,m2mathrmId,m3mathrmId,m4mathrmId)
Since the Vandermonde matrix
begin{pmatrix} 0^0 & 0^1 & 0^2 & 0^3 & 0^4 \ 1^0 & 1^1 & 1^2 & 1^3 & 1^4 \ 2^0 & 2^1 & 2^2 & 2^3 & 2^4 \ 3^0 & 3^1 & 3^2 & 3^3 & 3^4 \ 4^0 & 4^1 & 4^2 & 4^3 & 4^4 end{pmatrix}
has nonzero determinant, the 5 classes I listed are linearly independent over mathbbQ.
No comments:
Post a Comment