Tuesday, 26 January 2010

dg.differential geometry - Looking for a reference for the laplacian operator

So I wrote up this small derivation drawing insights from the answer by Deane Yang and Steve Huntsman,



With respect to the Riemann-Christoffel connection on a riemannian manifold the laplacian on that manifold will have the form nabla2phi=frac1sqrtgpartialmuleft[sqrtggmunupartialnuphiright]



where g is the the determinant of the metric on the manifold and phi is some smooth scalar function on the manifold.



On can write the line element on SnsubsetmathbbRn+1 as,



dOmega2n=dtheta21+sin2theta1dtheta22+sin2theta1sin2theta2dtheta33+...+sin2theta1sin2theta2...sin2thetan2sin2thetan1dtheta2n



Then the line element on mathbbRn+1 in polar coordinates can be written as,



ds2=dr2+r2dOmega2n



and
gmathbbRn+1=r2ngSn
where
gSn=(sin2theta1)n1(sin2theta2)n2...(sin2thetan2)2(sin2thetan1)1



Therefore since the metric is diagonal nabla2mathbbRn+1phi=frac1rnsqrtgSnpartialmuleft[rnsqrtgSngmumumathbbRn+1partialmuphiright]



=frac1rnsqrtgSnpartialrleft[rnsqrtgSnpartialrphiright]+frac1rnsqrtgSnpartialthetaileft[rnsqrtgSngthetaithetaimathbbRn+1partialthetaiphiright]



=frac1rnpartialr(rnpartialrphi)+frac1sqrtgSnpartialthetaileft[sqrtgSnfracgthetaithetaiSnr2partialthetaiphiright]



=frac1rnpartialr(rnpartialrphi)+fracnabla2Snphir2



Therefore after doing the differentiation we have the final result,



nabla2mathbbRn+1phi=fracnrpartialrphi+partial2rphi+fracnabla2Snphir2



And I don't see an neat way of writing the Laplacian on Sn !

No comments:

Post a Comment