So I wrote up this small derivation drawing insights from the answer by Deane Yang and Steve Huntsman,
With respect to the Riemann-Christoffel connection on a riemannian manifold the laplacian on that manifold will have the form nabla2phi=frac1sqrtgpartialmuleft[sqrtggmunupartialnuphiright]
where g is the the determinant of the metric on the manifold and phi is some smooth scalar function on the manifold.
On can write the line element on SnsubsetmathbbRn+1 as,
dOmega2n=dtheta21+sin2theta1dtheta22+sin2theta1sin2theta2dtheta33+...+sin2theta1sin2theta2...sin2thetan−2sin2thetan−1dtheta2n
Then the line element on mathbbRn+1 in polar coordinates can be written as,
ds2=dr2+r2dOmega2n
and
gmathbbRn+1=r2ngSn
where
gSn=(sin2theta1)n−1(sin2theta2)n−2...(sin2thetan−2)2(sin2thetan−1)1
Therefore since the metric is diagonal nabla2mathbbRn+1phi=frac1rnsqrtgSnpartialmuleft[rnsqrtgSngmumumathbbRn+1partialmuphiright]
=frac1rnsqrtgSnpartialrleft[rnsqrtgSnpartialrphiright]+frac1rnsqrtgSnpartialthetaileft[rnsqrtgSngthetaithetaimathbbRn+1partialthetaiphiright]
=frac1rnpartialr(rnpartialrphi)+frac1sqrtgSnpartialthetaileft[sqrtgSnfracgthetaithetaiSnr2partialthetaiphiright]
=frac1rnpartialr(rnpartialrphi)+fracnabla2Snphir2
Therefore after doing the differentiation we have the final result,
nabla2mathbbRn+1phi=fracnrpartialrphi+partial2rphi+fracnabla2Snphir2
And I don't see an neat way of writing the Laplacian on Sn !
No comments:
Post a Comment