Combining the trace formula proposed by Gjergji Zaimi and Qiaochu Yuan,
p_k={rm Tr}begin{pmatrix} e_1 & 1 & cdots & 0 \ -e_2 & 0 & ddots & vdots \ vdots & vdots & ddots & 1 \ (-1)^{N-1}e_N & 0 & cdots & 0 end{pmatrix}^{k},
with the formula quoted by Peter Erskin,
e_n=frac1{n!} begin{vmatrix}p_1 & 1 & 0 & cdots\ p_2 & p_1 & 2 & 0 & cdots \ vdots&& ddots & ddots \ p_{n-1} & p_{n-2} & cdots & p_1 & n-1 \ p_n & p_{n-1} & cdots & p_2 & p_1 end{vmatrix},
Mathematica produces the following expansions of pk:
N=2
p3=−frac12p31+frac32p1p2
p4=−frac12p41+p21p2+frac12p22
p5=−frac14p51+frac54p1p22
p6=−frac34p41p2+frac32p21p22+frac14p32
p7=frac18p71−frac78p51p2+frac78p31p22+frac78p1p32
p8=frac18p81−frac12p61p2−frac14p41p22+frac32p21p32+frac18p42
p9=frac116p91−frac98p51p22+frac32p31p32+frac916p1p42
p10=frac516p81p2−frac54p61p22+frac58p41p32+frac54p21p42+frac116p52
p11=−frac132p111+frac1132p91p2−frac1116p71p22−frac1116p51p32+frac5532p31p42+frac1132p1p52
N=3
p4=frac16p41−p21p2+frac12p22+frac43p1p3
p5=frac16p51−frac56p31p2+frac56p21p3+frac56p2p3
p6=frac112p61−frac14p41p2−frac34p21p22+frac14p32+frac13p31p32+p1p2p3+frac13p23
p7=frac136p71−frac712p31p22+frac736p41p3+frac712p22p3+frac79p1p23
p8=frac172p81−frac118p61p2+frac112p41p22−frac12p21p32+frac18p42+frac29p51p3
−frac89p31p2p3+frac23p1p22p3+frac89p21p23+frac49p2p23
N=4
p5=−frac124p51+frac512p31p2−frac58p1p22−frac56p21p3+frac56p2p3+frac54p1p4
p6=−frac124p61+frac38p41p2−frac38p21p22−frac18p32−frac23p31p3+frac13p23+frac34p21p4+frac34p2p4
p7=−frac148p71+frac748p51p2+frac748p31p22−frac716p1p22−frac724p41p3−frac712p21p2p3
+frac724p22p3+frac724p31p4+frac78p1p2p4+frac712p3p4
p8=−frac1144p81+frac136p61p2+frac524p41p22−frac14p21p22−frac116p42
−frac19p51p3−frac29p31p2p3−frac13p1p22p3−frac49p21p23+frac49p2p23
+frac112p41p4+frac12p21p2p4+frac14p22p4+frac23p1p3p4+frac14p24.
It seems to me that a nice and compact formula for ak,rho does exist. Indeed,
the coefficients in the above examples are extremely simple.
In particular, I observe that the last terms in each of pk for N=8
have the form
kprodjfrac1jrjrj!prjj,
which corresponds to
ak,rho=kprodjfrac1jrjrj!.
This formula (whose structure resembles the coefficients in the expansion of Schur functions quoted by Peter Erskin) also works for all terms of the type pjpk−j at arbitrary N.
Apparently, this is not a general formula, as can be seen from the coefficients in front
of pk1 which do depend on N.
I believe, however, that the general formula for ak,rho with N properly included should not be much more complex than the empirical one above.
Hope this helps.
No comments:
Post a Comment