I believe that the property does not hold for all Banach spaces, but my counterexample is a little involved. If you've the patience then follow me through...
Let V=bigoplusin=1nftyelln2 where ellp2 is mathbbR2 with
norm lVertcdotrVertp (Note: n is taking the role of p). For igeq1
and jin0,1 we have ei,j, the jth standard basis vector of
elli2 in V.
Give V the norm lVertvrVert=supnlVertvnrVertn.
Let W=vinV:lVertvnrVertnto0. I assert that W is a Banach space.
Certainly every ei,jinW.
Let A=ek,0+ek,1,ek,0−ek,1:kgeq1.
Fact: Let r(A) be the infimum of radii of balls containing A. Then r(A)leq1
Proof:
Let cN=sumni=1ei,0. We wish to compute the distance of each point
of A from cN.
For kleqN we have
lVertcN−ek,0−ek,1rVert
=lVertsumNi=1(inot=k)ei,0−ek,1rVert
=suplVertei,0rVerti:ileqN,inot=kcuplVert−ek,1rVertk
=1
and similarly for lVertcN−ek,0+ek,1rVert.
For k>N we have
lVertcN−ek,0−ek,1rVert
=max(lVertcNrVert,lVertek,0+ek,1rVertk)
=max(1,(1+1)frac1k)
=2frac1k
leq2frac1N
and similarly for lVertcN−ek,0+ek,1rVert.
Thus AsubseteqoverlineB(cN,2frac1N) and so r(A)leq2frac1N. Letting
Ntoinfty we have r(A)leq1.
QED
Fact: A is not contained in a ball of radius 1.
Proof:
Suppose AsubseteqoverlineB(c,1). Then in particular for every n we have
lVertc−en,0−en,1rVertleq1 and thus lVertcn−en,0−en,1rVertnleq1. Similarly lVertcn−en,0+en,1rVertnleq1.
Simple consideration of elln2 shows that this implies cn=en,0.
Thus lVertcnrVert=1notto0 and cnotinW, contradicting the assumption.
QED
No comments:
Post a Comment